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Abstract

We present a computational framework to explore the effect of microstructure and constituent

properties upon the fracture toughness of fibre-reinforced polymer composites. To capture

microscopic matrix cracking and fibre-matrix debonding, the framework couples a phase

field fracture method and a cohesive zone model in the context of the finite element method.

Virtual single-notched three point bending tests are conducted. The actual microstructure

of the composite is simulated by an embedded cell in the fracture process zone, while the

remaining area is homogenised to be an anisotropic elastic solid. A detailed comparison of

the predicted results with experimental observations reveals that it is possible to accurately

capture the crack path, interface debonding and load versus displacement response. The

sensitivity of the crack growth resistance curve (R-curve) to the matrix fracture toughness

and the fibre-matrix interface properties is determined. The influence of porosity upon the R-

curve of fibre-reinforced composites is also explored, revealing a higher crack growth resistance

with increasing void volume fraction. These results shed light into microscopic fracture

mechanisms and set the basis for efficient design of high fracture toughness composites.
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1. Introduction

Lightweight fibre reinforced polymer (FRPs) composites are being widely used in aero-

nautical and automotive applications due to their high specific stiffness and strength. To

meet the structural integrity requirements of composite structures used in transportation ve-

hicles, FRPs need to be sufficiently damage-tolerant to sustain defects safely until they can

be repaired [1]. This requires composite structures of high fracture toughness, a property

that depends on the mechanical properties of fibre, matrix, and fibre-matrix interfaces, as

well as of their spatial distribution within the material.

The fracture of FRPs can be generally classified into two categories: interlaminar frac-

ture (delamination) and intralaminar fracture. Interlaminar fracture toughness values are

controlled by the matrix toughness, which typically ranges from 0.1 to 3 kJ/m2 [2, 3]. In-

tralaminar fracture can be classified into two categories, namely fibre-dominated fracture and

matrix-dominated fracture. The reported intralaminar fracture toughness FRPs are in the

range of 1 to 634 kJ/m2 [3–5]. The matrix-dominated fracture toughness is comparable to

interlaminar fracture toughness (∼1 kJ/m2), while the fibre-dominated fracture toughness is

two order of magnitude higher. This is primarily due to the fibre-bridging effect, where a

significant amount of fracture energy is absorbed by fibre-matrix debonding, fibre pull-out

and fibre breakage.

Avenues for improving composite fracture toughness include matrix modification, ther-

moplastic particles, nanomaterial veils, stitching, Z-pin and 3D fibre architectures. These

methods generally take advantage of well-known toughening mechanisms such as crack de-

flection, microcrack toughening, fibre/grain bridging. While trial-and-error experimental

techniques are available to improve the fracture toughness, another emerging approach is the

application of computational micromechanics. This approach is based on the finite element

simulation of the mechanical response of a representative volume element (RVE) or an em-

bedded cell of the composite microstructure. This makes possible to (virtually) optimise the

material properties by changing the properties of the constituents. It can also provide the

homogenized constitutive behaviour of the composite material, which can then be transferred

to simulations at a larger length scale [6–8].

Cohesive Zone Models (CZM) [9, 10] and Continuum Damage Mechanics (CDM) models
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[1, 11] are being extensively used in computational micromechanics. However, one source

of mesh-dependence in CDM or CZM models is the mesh-induced direction bias. The mis-

alignment between crack band direction and mesh lines induces stress locking because of the

displacement continuity condition. A practical solution to mitigate mesh-induced directional

bias is to align a refined mesh with the fibre direction [12], requiring complex mesh gen-

erations and a high computational cost. To overcome this issue, different element enriched

formulations have been proposed, such as the eXtended FEM (X-FEM) [13] and the Floating

Point Method [14]. Despite their effectiveness, these techniques can also fail to track the ac-

tual crack path topology, whereby crack coalescence and branching scenarios may potentially

occur. A promising alternative for modeling the progressive failure of materials is the Phase

Field (PF) fracture model [15–17], which is gaining a growing interest in the scientific com-

munity [18]. In particular, this approach enables to accurately simulate complex crack paths,

including crack branching and coalescence in arbitrary geometries and dimensions. The PF

method is a variational approach to fracture that exploits the classical Griffith energy balance

[19]; cracking takes place when the energy released by the solid reaches a critical value, the

material toughness Gc. Recently, Quintanas-Corominas et al. [20–23] and Espadas-Escalante

et al. [24] have successfully used the PF model to capture the intralaminar and interlam-

inar damage behaviours at the mesoscale level. However, important phenomena governing

the crack path topology and macroscopic fracture toughness remain unaddressed; these in-

clude the influence of fibre, matrix, and fibre-matrix interface, as well as other toughening

or embrittlement mechanisms (i.e. fibre bridging, crack branching, voids, defects, etc).

In this work, a coupled PF-CZM framework is presented to model the matrix cracking,

fibre-matrix interface debonding, and homogenised fracture toughness. Finite element mod-

elling of single edge notched three-point bending tests are conducted. The predicted results

are validated against the measured crack path and load-displacement curves. The main novel

aspects herein are: (i) For the first time, a combined PF-CZM model is used to predict the

miscroscale crack propagation and investigate the debonding and matrix bridging behaviour.

(ii) The effect of matrix toughness, interface strength and toughness on the crack trajectory

and the R-curve are firstly quantified. (iii) We explore the influence on the fracture tough-

nesss of microstructures with varying degrees of porosity. Our model opens new opportunities
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for the efficient and cost-effective design of energy-absorbing materials and structures.

2. Numerical model

The formulation combines two fracture models. The phase field fracture method, capable

of capturing arbitrary crack trajectories, is used to model crack initiation and growth along

the matrix and the fibres. Furthermore, fibre-matrix debonding is simulated using a cohesive

zone model. Both models are described below and implemented in the commercial finite

element package ABAQUS by means of user element subroutines.

2.1. Phase field fracture model

The phase field fracture method builds upon Griffith’s thermodynamics [19]; crack ad-

vance is driven by the competition between the work required to create a new surface and

the strain energy released by the solid as the crack grows. Griffith’s energy-based failure

criterion can be expressed in variational form [25]. Thus, consider an arbitrary body Ω ⊂ IRn

(n ∈ [1, 2, 3]) with internal discontinuity boundary Γ. The total potential energy of the body

will be a sum of the contributions associated with the strain energy density ψ and the fracture

energy Gc as,

E (u) =

∫
Ω

ψ (ε (u)) dV +

∫
Γ

Gc dS , (1)

where u and ε =
(
∇uT +∇u

)
/2 denote the displacement and strain fields, respectively.

Minimisation of the Griffith energy functional (1) is hindered by the complexities associated

with tracking the propagating fracture surface Γ. However, an auxiliary variable, the phase

field φ, can be used to track the crack interface; φ is a damage-like variable that goes from

0 in intact regions to 1 inside of the crack - see Fig. 1.

Following continuum damage mechanics arguments, a degradation function g = (1− φ)2

is defined that diminishes the stiffness of the material with evolving damage. Accordingly,

the total potential energy functional can be re-formulated as

E` (u, φ) =

∫
Ω

(1− φ)2 ψ (ε (u)) dV +

∫
Ω

Gc

(
φ2

2`
+
`

2
|∇φ|2

)
dV , (2)

where ` is a length scale parameter that governs the size of the fracture process zone; the

non-local character of the phase field method guarantees mesh objectivity. As rigorously
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Figure 1: Schematic representation of a solid body with (a) internal discontinuity boundaries, and (b) a

phase field approximation of the discrete discontinuities.

proven using Gamma-convergence, the (u, φ) sequence that constitutes a global minimum

for the regularised functional E` converges to that of E for a fixed ` → 0+. Thus, ` can be

interpreted as a regularising parameter in its vanishing limit. However, for ` > 0+ a finite

material strength is introduced and ` becomes a material property governing the strength

[26]; e.g., for plane stress:

σf ∝
√
GcE

`
=
KIc√
`

(3)

where KIc is the material fracture toughness.

Finally, the strong form can be readily derived by taking the first variation of E` with

respect to the primal kinematic variables and making use of Gauss’ divergence theorem.

Thus, the coupled field equations read,

(1− φ)2 ∇ · σ = 0 in Ω

Gc

(
φ

`
− `∆φ

)
− 2(1− φ)ψ = 0 in Ω (4)

The discretised forms of the field equations are solved by using a staggered solution scheme

[16, 27].

2.2. Cohesive zone model

Debonding between the matrix and the fibre is captured by means of a cohesive zone

model with a bi-linear traction-separation law, as shown in Fig. 2. For both normal and
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shear tractions, the constitutive behaviour of the cohesive zone interface is governed by the

initial interface modulus K, the interface strength σI and the fracture energy GI .

Shear mode Normal mode

Figure 2: Sketch of the cohesive zone formulation employed for predicting fibre-matrix debonding.

Following Camanho and Davila [9], an effective separation is introduced to describe the

evolution of damage under a combination of normal and shear deformation

δm =
√
〈δn〉2 + δ2

s (5)

The onset of damage is predicted in terms of the normal tn and shear ts tractions using

a quadratic nominal stress criterion,(
〈tn〉
σNI

)2

+

(
ts
σSI

)2

= 1 (6)

Finally, damage evolution is governed by the energetic Benzeggagh-Kenane fracture criterion.

Thus, the mixed-mode critical energy release rate GC will be attained when,

GN
I +

(
GS
I −GN

I

)( GS

GN +GS

)η
= GC (7)

where η is a material parameter, and GN
I and GS

I respectively denote the fracture energies

required to cause failure in the normal and shear directions.

3. Results

3.1. Singe-edge cracked plate subjected to tension

To verify our PF model on bulk matrix, we model a singe-edge cracked plate with the

geometric setup, dimensions and boundary conditions given in Fig. 3a. The square plate
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of width H = 1 mm and height W = 1 mm has an initial crack length of a0 = 0.25 mm.

We load the plate by prescribing the vertical displacement in the upper edge, and fix both

vertical and horizontal displacements in the bottom boundary. We adopt the following epoxy

material properties for the cracked plate, Young’s modulus E = 3.5 GPa, Poisson’s ratio ν =

0.35, tensile strength σN = 20 MPa and critical energy release rate Gm = 10 J/m2.

To assess the effect of fibre reinforcement on the crack propagation of composite material,

we use the same geometry, dimensions and boundary conditions as above, except for the

additional fg = 37.2 % fibre reinforcements, see Fig. 3b. We use E-glass fibre of Young’s

modulus E =74 GPa, Poisson’s ratio ν = 0.35 and critical energy release rate of Gf = 13.5

J/m2. Both glass fibre and epoxy matrix are assumed to be linear elastic, isotropic solids. A

cohesive surface contact between fibre and matrix is defined and follows a traction-separation

law with the properties given in Table 1, where the interfacial tensile strength is assumed

to be two-thirds of the shear strength, σNI = 2σSI /3 [8]. To compare the effect of matrix

cracking and interface debonding more directly, we choose two sets of material parameters:

namely σNI ≤ σNm and σNI > σNm .

Table 1: Properties of fibre-matrix interface [8]

σNI (MPa) σSI (MPa) KN (GPa) KS (GPa) GN
I (J/m2) GS

I (J/m2) η

40 60 1000 1000 125 150 1.2

Four-node quadrilateral plane strain elements were used. After a mesh sensitivity study,

a fine mesh with a characteristic element size h =0.001 mm is used, eight times smaller than

the phase field length scale [28]. When conducting the mesh sensitivity analysis, attention

is paid to ensure that the fracture process zones associated with both the phase field and

the cohesive zone model are resolved. In total, 11,221 and 42,361 elements are used for the

matrix and composite models, respectively.

The predicted stress-strain responses of single edge cracked plate made from bulk matrix

and fibre-reinforced composites are summarised in Fig. 3c. The stress-strain curve of matrix

model shows a linear elastic behaviour until reaching the peak load. This is followed by a load

drop, corresponding to the crack evolution, see Fig. 3d. If fibres are added to the matrix, a
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(a) (b)

Matrix

Fibre

Matrix InterfaceMatrix

Matrix
Composite

Debonding

(Debonding)

Composite: Composite:

(c)

(e) (f)(d)

(Matrix cracking)

Figure 3: Single-edge cracked plate subjected to tension: (a) Model setup for matrix, and (b) composite. (c)

Stress-strain response of single-edge cracked plates made from bulk matrix or fibre-reinforced composite. (d)

Crack propagation of matrix. Crack propagation of composite where (e) σN
m ≤ σN

I and (f) σN
m > σN

I .

stiffening and toughening effect is observed on the overall material behaviour. If the fibre-

matrix interface debonding initiates first (σNI ≤ σNm), there is a notable non-linear behaviour

prior to load drop. Before reaching the peak load, a large number of fibre-matrix interfaces

have experienced decohesion, which contributes to the unusual non-linear response. The

multi-step load dropping in the softening regime is attributed to the coalescence of interface

debonding and matrix cracking, see Fig. 3e. However, if the matrix cracking initiates first

(σNI > σNm), no interfacial decohesion is observed. A linear elastic behaviour is predicted

before the maximum load, followed by a zig-zag softening behaviour. This is mainly due to

the crack deflection effect in the fibre-reinforced composites. Instead of a straight cracking

trajectory, the crack propagating through the matrix will deflect upon encountering the fibres

(Fig. 3f), hence increasing the fracture surface area and the macroscopic fracture toughness.

To quantify the role of the fibres, we estimate an equivalent work of fracture as the area

under the resulting stress-strain curve divided by the ligament crack surface area 0.75 mm2.
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We find that the composite with interface debonding has the highest work of fracture, 21.7

J/m2, followed by the composite without interface debonding (20.4 J/m2), with the bulk

matrix giving 14.3 J/m2. Therefore, to improve the macroscopic fracture toughness of fibre-

reinforced composites, the fibre-matrix interface strength should be reduced, consistent with

most toughening approaches used in ceramic fibre-reinforced composites [29]. However, to

improve the strength of fibre-reinforced composites, a high fibre-matrix interface strength is

required.

3.2. Single-edge notched three-point bending test

We proceed to simulate three-point bending (TPB) experiments on a notched beam to

predict the microscale crack topology and the matrix-dominated toughness of the composite

lamina. This is achieved by means of an embedded cell model, following the approach

developed in [8, 10]. As shown in Fig. 4, the complete composite microstructure is resolved in

the fracture process zone as an embedded cell, while the remaining ply material is represented

as a homogeneous, transversely-isotropic elastic solid. The two regions share nodes at their

interface, implying a continuous displacement field between the homogenised region and the

embedded cell. We calculated the material constants of the homogenised region based on

Mori–Tanaka method [10]. The Young’s modulus is Eh = 11 GPa and the Possion’s ratio

is νh = 0.3. The sample dimensions and experimental setup are given in Fig. 4. A single

edge-notched beam with a support span L = 11.2 mm, equal to four times the width W , is

loaded in three-point bending. The thickness of the beam is t = 2 mm. The initial crack

length is a0 = 1.4 mm. Inside the embedded cell, the randomly distributed glass fibres of

volume fraction fg = 54 % are surrounded by epoxy matrix. Fibre diameter ranges from

13 µm to 17 µm. The characteristic element size is set to 1 µm in the embedded region

and gradually grows to 0.2 mm at the outer edges. The whole model is formed by 152,364

four-node plane strain elements. The fibre, matrix and fibre-matrix interface properties used

in the previous section were taken as baseline input parameters. The applied load P, the

loading point displacement δ and the crack mouth opening displacement (CMOD), ∆, were

continuously recorded during the virtual tests.
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Fibre Cohesive surface

Matrix

1.35 Thickness: Homogenised
composite

Figure 4: Model set-up of single-edge notched bending tests. All dimensions are in mm.

The predictions of the virtual three-point bending test are shown in Fig. 5. First, the

measured [10] and simulated load-CMOD displacement are plotted in Fig. 5a using the

embedded cell model presented above. The numerical model accurately captures the mea-

sured behavior including the linear-elastic response of the beam before the peak load, the

CMOD at the maximum load and the softening regime of the curve. The maximum load

is slightly underestimated (around 10%), within the experimental scatter. In addition to

the load-CMOD response, the model is able to reproduce the microscopic deformation and

failure mechanisms, see Fig. 5b. In agreement with what is observed in the scanning electron

micrographs, damage began by interface debonding at the outer surface the fibres. Cracks

propagated along the fibre–matrix interface and voids grew by distinct interface separation.

A continuous crack path was finally developed by the coalescence of matrix cracking and

interface decohesion, while a significant amount of matrix ligaments were bridging the crack.

The numerical simulations also precisely capture the crack evolution with increasing remote

load. This is shown in Fig. 5c, where snapshots of scanning electron micrographs for different

values of the CMOD are plotted together with the predicted results.
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FE FE FE

Figure 5: Measured [10] and predicted (a) load-CMOD curve, (b)crack propagation at high magnification

and (c) crack propagation at low magnification.

Cyclic loading was also applied to the TPB specimen to investigate unloading and reload-

ing behaviour and calculate the unloading compliance C = δ/P . This is facilitated by the

linear elastic fracture response of composite materials, as confirmed by the unloading response

to the origin shown in Fig. 6a - no plastic effects have been considered. Thus, we follow

the ASTM standard [30] to calculate the R-curve. In brief, the elastic compliance is used to

calculate the effective crack size ae, which is then used to calculate the geometrical correction

factor f(ae/W ). The stress intensity factor was then given by K = PS(BW 3/2)−1f(ae/W ).

Finally, the J-integral is estimated by substituting K into the plain strain equation below,

J =
K2(1− ν2)

E
. (8)
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The change in J with crack extension determines the R-curve.

(a) (b)

Figure 6: (a) Measured load-CMOD response [10] is compared with the predicted loading-unloading response

(b) Measured [10] and predicted R-curves.

The measured and predicted R-curves are plotted in Fig. 6b. Predictions for the R-curve

response of the TPB test agree closely with those measured in the experiments. The rising

R-curves observed both in the experiments and in the numerical predictions are attributed

to the bridging effect from the matrix ligaments and the softening behaviour of fibre-matrix

interface decohesion.

3.2.1. Sensitivity study

The fibre, matrix, and interface properties used in the previous section were taken as

baseline values and a parametric study was carried out by simulating the mechanical response

of the single notched beam bending test for different values of the phase field length scale `,

matrix fracture energy release rate Gm, interface mode I fracture energy release rate GN
I and

interface normal strength σNI . The load-CMOD responses of these parametric analyses are

plotted in Fig. 7. Fig. 7a shows that reducing the value of ` elevates the force-displacement

response; in all cases, a constant ratio `/h = 8 is adopted to ensure mesh independent results.

This can be rationalised by recalling the relation between the phase field length scale and

the material strength: σc =
√

27EGc/(256`) (see, e.g., [28]). However, the influence of `
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appears to be small. In agreement with fracture mechanics, phase field predicts a strength

dominated behaviour (i.e., sensitive to the choice of `) when the initial defect is smaller than

the transition flaw size, and a fracture dominated response (i.e., governed by Gc) for larger

cracks [26]. In elastic-plastic materials, cracking always takes place at G = Gc if the initial

flaw is sufficiently large but the dissipation (R-curve) is influenced by ` [31]. As expected, both

the peak load and the CMOD at the maximum load increase with the increasing Gm, see Fig.

7b. However, the interface fracture toughness has a relatively small effect on the load-CMOD

responses, see Fig. 7c. Therefore, to enhance the overall fracture toughness, increasing the

matrix toughness is more effective than increasing the interface fracture toughness. This

supports the trend of using thermoplastic materials for high fracture toughness applications

[3]. The interface normal strength σNI has a significant impact on the maximum load, which

correlates to the initiation of fibre-matrix interface debonding. From the above analysis, we

can conclude that interface strength σNI determines the peak load, while both the matrix

and the interface fracture toughness contribute to the softening behaviour of the overall

mechanical response.
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(a) (b)

(c) (d)

Figure 7: Sensitivity study of the parameters used in the simulations: (a) phase field length scale `, (b)

fracture toughness of matrix Gc, (c) fracture toughness of interface GN
I and (d)interface strength σN .

3.2.2. The effect of porosity

After validating our model against the experimental results, we shall now proceed to

explore the effect on the fracture behaviour of other microstructures, such as those arising

from an increase in porosity or voids. In a composite material, a void is a pore that remains

unfilled with polymer and fibres. Voids are typically the result of poor manufacturing of

the material and are generally treated as defects as they can degrade matrix-dominated

properties such as interlaminar shear strength, transverse tensile strength and longitudinal
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compressive strength, hence affecting the overall mechanical properties. The effect of porosity

on strength has been assessed by Vajari et al. [32]. Here, we quantify the influence of voids

on both strength and fracture toughness. To achieve this, we introduce pores on the baseline

model, with the porosity ranging from fp = 2% to fp = 10%. The porosity is represented by

circular voids within the matrix and all the other conditions are kept the same. 2D models

can provide quantitative insight into the role of porosity as pores in unidirectional ply have a

tubular shape [33]. The resulting crack trajectories for selected porosity levels are shown in

Fig. 8a. Crack blunting was observed during the fracture process. The crack paths appear

to be very sensitive to the porosity level. In addition, as shown in Fig. 8b, both modulus

and strength decrease with increasing volume fraction of porosity. The strength is reduced

by approximately 17% in the presence of 10% porosity. A similar degradation was measured

by Olivier et al. [34] and predicted by Vajari et al. [32]. Figure 8c shows how the R-curve of

fibre-reinforced composites changed from ‘flat’-type to ‘rising’-type with increasing porosity.

For the sample with higher porosity (10%), the fracture toughness rises continuously with

crack advance, exhibiting a more stable crack growth. The sample with 10% porosity has

a 37% higher fracture toughness compared to the sample without porosity for ∆a = 0.8

mm. This toughening effect can be attributed to the circular holes that blunt the crack-tip

and increase the fracture toughness [35]. This finding differs from the effect associated with

manufacturing induced defects, where voids degrade the mechanical behaviour [7]. It should

be noted that manufacturing-induced voids are commonly not regular and are more likely to

be located close to fibre-matrix interface; hence reducing the interface and the macroscopic

fracture toughnesses. For this virtual test case, all the voids have a regular circular shape

and are located at the matrix pocket. Therefore, crack blunting effects are enabled.
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Figure 8: The role of porosity on: (a) the crack trajectory, (b) the load-CMOD response, and (c) the fracture

resistance R-curves.
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4. Conclusions

In this work, we present a novel coupled phased field and cohesive zone model to explore

the effect of microstructure and constituent properties on the macroscopic fracture tough-

ness. Several boundary value problems of particular interest are modelled to showcase its

capabilities and gain physical insight.

First, an analysis of simple single-edge cracked plate tension tests on fibre-reinforced com-

posites suggests that a weak fibre-matrix interface strength will raise the fracture toughness

but reduce material strength. Secondly, the model is validated against single-edge notched

beam bending experiments. Our predictions exhibit an excellent correlation with the ex-

perimental results both qualitatively and quantitatively. Subsequent parametric analyses

suggest that increasing the matrix toughness is a more effective toughening mechanism than

enhancing the interface fracture toughness. Finally, the influence of different microstructures

with varying porosity levels is subsequently investigated to determine optimal toughening

strategies. We show that introducing a volume fraction of void inclusions in the matrix-resin

regions can enhance the composite fracture toughness due to crack blunting effects.

This embedded cell-based, combined phase field and cohesive zone computational frame-

work provides a compelling multiscale virtual tool to investigate the role of the microstructure

and material properties. This will lead to more efficient and rapid designs for enhancing the

fracture toughness of energy-absorbing materials and structures.
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